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For the 3-dimensional Ising model with long-range interaction, Gibbs states are 
constructed that are small perturbations of non-transtation-invariant ground 
states. These ground states are in one-to-one correspondence with the set of all 
rational planes. 
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1. F O R M U L A T I O N  OF RESULTS 

We consider the Ising ferromagnet on the lattice with long-range inter- 
action. The Hamiltonian has the form 

H(rp)= -�89 V~ J ( x -  y) ~o(x) q)(y) (1 
x , y ~ Z  3 

where the spin variables q~(x) take the values + 1, the potential J(x - y) is 
a nonnegative, translation-invariant function, and ~2x ~ z3 J(x) < oo. 

The periodic ground states of the Ising ferromagnet are ~o+(x) = 1, 
o?-(x)=_-1,  x eZ3.  (1) There are also non-translation-invariant ground- 
state configurations. The set of some of them is described by the following 
theorem: 

T h e o r e m  1. Let n denote the plane given by the equation 

r l x  I q- r 2 x  2 q- r 3 x  3 = 0 (2) 
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If r .  = (q ,  r 2, r3) , then the configuration 

r = { 1, 

1, 

is a ground state of the model (1). 

( r . -x)~>0 
(3) 

( r ~ . x ) < 0  

Geometrically, Theorem 1 means the following. Given any plane 7r, the 
ground state r  is the configuration having different values of spins in 
the different halves of R 3 defined by re. 

Remark.  Theorem 1 remains true in any dimension. 
The model (1) was considered, by Burkov, ~2) who proved Theorem 1 

for the case of a two-dimensional lattice by a method based on the 
Hubbard criterion. 

In this paper we study the structure of the set of low-temperature 
Gibbs states of the model (1). Griffiths inequalities imply that when the 
temperature is low, the model (1) has at least two extremal Gibbs states 
(from the fact that the usual Ising ferromagnet has). Let us denote these 
states by P+ and P . They are small perturbations of the ground states 
~p+(x) and ~0 (x). We consider the question of the existence of Gibbs 
states that are small perturbation of the configurations ~0~(x) for various 
planes 7z. Dobrushin (3) was the first to discover the existence of nonperiodic 
Gibbs states connected with nonperiodic ground states in the Ising 
ferromagnet. 

We call a plane n rational if re and rj are rationally dependent numbers 
for all pairs (i, j),  i, j = 1, 2, 3. It is called semirational if only one of three 
pairs of numbers re, r s are rationally dependent, i r  Other planes are 
called irrational. In the case of a rational 7t, the n interface of the model (1) 
and the (1, 0, 0) interface of the Ising ferromagnet have similar properties. 
Thus, it is reasonable to expect the existence of a stable interface separating 
ferromagnetic phases in model (1). Under some additional assumption this 
is really true: the main result of the present paper is the following. 

T h e o r e m  2. Assume that J ( x -  y)  = J(r) = r -~, ct > 9, and assume 
n to be an arbitrary rational plane. Then one can find f l i t= const/J~ such 
that if fl > fl~r, then there exists a Gibbs state P~ such that 

P,(~p(x) = - 1 ;  x: q~,(x) = - 1 )  > 1 - g(fl) (4) 

e~(~o(x) = - 1 ;  x: u,~(x)= 1)~< g(/~) (5) 

where g(fl) ~ 0 when fl ~ ~ and J~ is constant depending on the plane rt 
only [defined just before Eq. (10) below]. 

An infinite set of Gibbs states P~ is obtained by parallel shifts of the 
plane n. 
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Theorem 2 easily leads to the following result: 

Theorem 3. Assume that J(r)= r -~, 7 > 9, and some temperature 
f l - i  is fixed. Then the Gibbs states describing the coexistence of phases 
exist for any rational plane such that fl~r < ft. 

Theorems 2 and 3 can be easily generalized to any lattice Z v, v > 3. 
The condition v~> 3 is essential. Recently it has been shown (a-6) that all 
low-temperature Gibbs states are translation invariant for a wide class of 
models on Z 2. 

Now we explain briefly the scheme of the proof of Theorem 2. The 
main strategy is similar to that in ref. 3. The main differences are as follows. 
The new point is that we have to investigate the model with long-range 
interaction. So it is necessary to consider thick contours and contour 
models with interaction. This leads to some modifications in the definitions 
of walls and ceilings. In addition we develop a special technique for decom- 
posing the partition function (Section 4). 

2. I N V E S T I G A T I O N  OF G R O U N D  STATES 

In this section the proof of Theorem 1 will be given. 

Proof of Theorem 1. Let the plane n be fixed and the configuration 
q~,(x) be defined by (3). To prove the statement, we have to show that 

H(Fp~(x) l ~p,~(x) ) = H(Fp~(x) ) - H(~p,~(x) ) >~ 0 (6) 

where the configuration ~ ( x )  is a local perturbation of the configuration 
~o~(x) on an arbitrary, finite set A ~ Z 3. Note that H(0~(x) [ ~0~(x)) is finite, 
since ~x~z3 J(x)< ~ and the perturbation is finite. By definition 

H(Fp,~(x))-H(q~(x))=�89 ~ J(x-y)(qb~(x)(p,~(y)-(o,~(x)O.(y)) (7) 
x , y ~ Z  3 

Let us decompose the set of all pairs (x, y), x, y e Z  3, into the 
following four classes: 

M 1= {(x, y): x e A ,  y e A }  

M2 = {(x, y): xCA, y e A }  

M 3 =  {(x, y): q~(x) opt(y) = 1, x e A ,  yq~A, orxCA,  y e A }  

M 4 =  {(x, y): ~o,(x) ~0~(y)= -1 ,  x e A ,  y e A ,  or xCA, y e A }  
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Then the formula (7) can be written as follows: 

= y)  + y)  
(x, y) ~ MI (x, y) E M2 

+ Y 
(x, y) �9 M3 (x, y) �9 M4 

(8) 

where 

~(x, y) = 1J(x - y)[(p~(x) q~.(y) - ~,~(x) r (9) 

Now note that all the terms e(x, y) vanish in the first and second 
sums, all the terms are greater than or equal to zero in the third sum, and 
all the terms e(x, y) are smaller than or equal to zero in the fourth sum. 
Thus, to prove the inequality (6) it is sufficient to verify that for each 
negative term of the fourth sum it is possible to find a unique positive term 
of the third sum such that their absolute values are equal. Suppose 
(2, y ) e M  4. By definition ~0" (2 )~o , (y )= -1  and one of the following 
symmetric conditions holds: (1) 2 c A ,  y r  (2) ~ r  y e A .  

Assume that condition 1 holds. Let us define the sequence of points vn, 
n>~l, as follows: Vl=Y, v2=2, vn= T(V,_ l, V,_ 2) for n > 2 ,  where 
T(x, y) = 2 x -  y denotes the point that is symmetric with the point y with 
respect to the center x. Then we introduce the sequence of pairs w , =  
(vn, v,+l) ,  n>~ 1. By definition wleM4, and wi~M 4 for i >  1. Because A is 
finite, there exists N such that wieM2, i>N. Notice that since the 
sequence q)(vn), n>~l, contains terms with different signs, the set 
{Wk: wk~M3} is not empty and the number 

m--  m i n k  
w k E M 3  

is well-defined. Obviously, J(Vi+l,CVi)=J(vj+l, vj) for any i,j>~ 1. 
Finally, the needed correspondence is constructed as follows (see Fig. 1): 

Ot(fc, Y)-">O~(Vm, Vm+l), (9~, Y) e M4, (v,.,Vm+l)eM3 

It is clear from the construction that when e(x, y) are different, the 
~(V,,,Vm+I) corresponding to them are also different. The proof of 
Theorem 1 is complete. 

Remark. We used just the condition J ( x - y ) = J ( T ( x , y ) - x ) ,  
x, y e Z 3, in the proof of Theorem 1. Hence Theorem 1 holds for some non- 
translation-invariant potentials J(x, y) as well. One can see from the proof 
that Theorem 1 holds for any dimension of the lattice Z v. 
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(-)phase 

(+) phase 

Fig. 1 

3. THE S T R U C T U R E  OF AN INTERFACE 

Let us introduce several necessary definitions. A rational plane n will 
be assumed to be fixed. The two-dimensional lattice obtained as the inter- 
section n c~ Z 3 will be called a derived lattice Z~. The case where g is not 
rational is discussed in Section 8. Let {al, a2} be an arbitrary basis of the 
lattice Z ]  such that a 1 and a2 issue from a point x and [all + la21 is 
minimum. Let ~ be the family of all the planes parallel to n and containing 
at least one point of Z 3. The distance between two nearest different planes 
of 0~ will be denoted by fi3: 

a3= min p(x,y) 
y~Z3, ydp~ 

The prism V,~(x) with its center at a point x E Z 3 having the linear sizes 
al = ralt, a2 = ]a21, and a3 will be called the minimal prism (MP) provided 
the edges of lengths a~ and a2 are parallel to a~ and a2, respectively, and 
the edge of length ~3 is perpendicular to the plane n (see Fig. 2). 

Let V= { V,~(x), x ~ Z3\xo} ,  where x0 e Z 3 is fixed. For geometrical 
reasons, it is obvious that for Xo fixed there are in general exactly 12 points 
x such that V,~(x)c~ V,~(Xo)r ~ (for some special planes the number of 
neighboring MPs equals six or eight). 

The distances from the point Xo to the centers of these 12 MPs are 
determined by six numbers, two of which are al and a2. Let a3, a4, as, and 
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Fig. 2 

a 6 denote the other four parameters. The centers of these 12 MPs are called 
g-nearest neighbors of a point x o e Z  3. The faces of MP  V,~(Xo) parallel to 
7~ are called horizontal; the other four faces are called vertical. Therefore, 
each of two horizontal faces of V,~(Xo) is divided into four parts, each the 
intersection V,~(Xo) and V,~(x), where x denotes a g-nearest neighbor of the 
point Xo. The MP V~(xo) may be considered as a MP  with 12 faces. Thus, 
for each of 12 faces of V,~(Xo) we have the corresponding pair of ~-nearest 
points (the distances between which are ai, i =  1,..., 6), which determines 
the weight J(h) of a face h: J(h)=J(ai). The set of all faces is divided 
naturally into six classes according to their weights. Let J~ denote 
min(J(al) ,  J(a2)). 

D e f i n i t i o n  1. The boundary of the configuration (p(x) is defined as 

the set 

'10' 

Consider a configuration ~ ( x ) ,  which is an arbitrary finite perturbation of 
the ground state q~(x) [see (3)]. The only infinite connected component of 
the boundary F ~ of the configuration ~b~(x) is called an interface and is 
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denoted by A ~. Let B ..... denote the set of all vertical faces belonging to the 
set B ~. 

The following simple lemma gives some reasons for expecting 
Theorem 2 to hold. 

I . e mma  1. For any finite perturbation qS~(x) of the ground state 
q)~(x) there exists a positive constant c, depending on the plane ~ only, 
such that 

H( Fp~(x) ) - H(cp~(x) ) >1 c~ I B . . . . .  [ (l l) 

where IB . . . . .  I is the total area of all vertical faces. 

ProoL Let ~ ( x )  be an arbitrary perturbation of the configuration 
opt(x). It follows from the proof of Theorem 1 that 

H ( ( o ~ ( x ) ) -  H(~o~(x)) = ~ c~(x, y)  
(x,y)~M 

where M i s  a subset of the set of all pairs (x, y), x, y e Z  3, and ~(x, y ) > 0 ,  
(x, y) e M. It follows from the definition of B ~ [see (10)], q)~(x), and B .. . .  r 
that if points x and y are separated by a vertical face h, then ~ ( x )  ~b~(y) = 
- l ,  q~(x) ~0,(y) = 1, and c~(x, y) = J ( x -  y). Thus, 

wl)ere 

H((o.(x)  ) - H(cp~(x) ) >~ c.  [B ..... I 

c . =  min (2J(al), 2J(a___._Z!~ 
k, air13 a2a3 / 

Tile proof of Lemma 1 follows. 
The inequality (11) can be slightly improved by including nonvertical 

faces on the rhs. But we shall not consider this in detail here, since it is 
necessary to define walls and ceilings (see ref. 3) in order to obtain a more 
exact inequality. 

For the following calculations, let us introduce an auxiliary cubic sub- 
lattice 23 = Z 3( R)  of the lattice with the spacing R and with one of its 
coordinate axes perpendicular to the plane ~z. It is easy to see that there 
exist values R for which 23(R) exists. The way of choosing R for our 
calculations will be given below. For further use we define R~ to be the 
smallest such possible value. Let A denote the set of all possible cubes A t 
(the point t is the center of the cube A,) with vertices from ~3 and the 
lengths of edges equal to R. Introduce quadrilateral parallelepipeds 

WL, M = {x  c Z 3, - M  <~ Y~I(x) <~ M, - L <~ Yc2(x) ~ L, - L <~.~3(x) <~ L } 
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where 2i(x), i =  1, 2, 3, are the coordinates of the point x with respect to 
the coordinate system corresponding to the lattice 23, the axis 21 being 
perpendicular to the plane ~. 

Now we can define contours for the models (1). Let us fix boundary 
conditions ~ wL,,~(x) = {~p~(x), x ~ Z3\  WL,~t} and consider an arbitrary 
configuration ~o(x) in WL, M. We define a contour as the pair consisting of 
a contour support supp K and a function ~p(supp K) that is a restriction of 
the configuration q~(x) to supp K. First define the support of a thick boun- 
dary supp B R as the set of all cubes At such that for each cube At there 
exist at least two n-nearest neighboring points x, y ~ Z 3, x, y ~ At, and 
q~(x) :~ ~o(y). Two cubes A,~ and At2 are called connected provided At~ c~ A~2 
consists of at least one point x ~ 23. The connected components of supp B R 
defined in such a way are called supports of contours and are denoted as 
supp K. 

Defini t ion 2. The pair K = ( s u p p K ,  q0(suppK)) is called a 
contour. The set of all contours is called a thick boundary B R of the 
configuration q~(x). The contour K =  (supp A, ~0(supp A ) )=  A is called the 
interface when supp A is the only infinite connected component of the set 
supp B R. 

4. C O N S T R U C T I O N  A N D  INVEST IGATION 
OF THE C O N T O U R  M O D E L  

Following ref. 3, we investigate the statistics of an interface A ~. We 
establish its stability, which holds because the potential is long-range. It 
will be necessary to consider the interface A instead of the interface zl ". 

Let us introduce the Gibbs distribution on the configuration space 
q~WL, M(X)={q~(x),x~ WL.M} corresponding to the boundary condition 
(OwL, M(X)={q~,(X),xeZ3\WL, M} and Hamiltonian (1). Consider the 
corresponding distribution on the set of all interfaces: 

Prob(6 = A) = F(A) (12) 
Z~ r(~) 

where 

F(A ) = ~ exp [ -- flH(qLj(x))] 
, .p,j 

is a statistical weight of all configurations with a fixed interface A; the ~2~ 
in (12) means that the sum is taken over all possible interfaces A. 
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For each interface A there is a unique configuration O~(x) such that 
BR(tp~(x))=A, i.e., the boundary is exactly A. The set of points 
x ~ Z 3 \ s u p p A  such that ~bA(x)= 1 [0~(x)=  --1] will be called points of 
the + 1 phase ( - 1 phase) and will be denoted by S~ (S 2 ). Let d be fixed. 
The set of points x 6 Z 3 \ s u p p A  such that xEA,  and A t n s u p p A  is not 
empty (i.e., it consists of a face, edge, or point) is called the set of near- 
boundary points S~. Geometrically, it is clear that the support of the inter- 
face of the configuration cp(x) is supp A iff ~o(x)= 1 [q)(x)= - 1 ]  for the 
points of the + 1 phase [ - 1 phase] belonging to o~a. Thus, there is a bijec- 
tion between the configurations 

q~(x) = {q)(x), x~ S~ = WL, M\(S~ W supp A)} 

and the configurations ~o'(x) = ~O'wL, M(X) such that d(q)'(x)) = d (see ref. 3). 
According to above remarks, the formula (12) may be written in a 

more convenient way: 

Prob(c5 = ~ ) -  exp[-fl~c(A)] 2(S~) (13) 
ZA exp [ - fl~(A ) ] Z(S~) 

where ~c(A)=H(O~(x)[~o~(x)) and -~(S~) is a partition function 
corresponding to the Hamiltonian H(cp(x)[ip~(x)) in the volume S~ under 
the boundary conditions 

q)(X) = {q)Tz(X), X e Z 3 \  WL, M" ~ ~o(supp A w Sa), x e supp A w Sa } 

To investigate the formula (13) it is necessary to study the properties 
of the partition function Z(S~) depending on the geometric shape of Sa 
and the boundary condition qS(x): It will be proven below that this depen- 
dence is rather weak. 

More exactly, in this section we prove the following result: 

I_emma 2. For all/1 large enough there exists a function g~(x, V), 
x e Z 3, V c Z 3, such that 

In Z(Sa) = • g~(x, S~) (14) 
x ~  S,~ 

where g(x, V) has the following properties: let d(Xl, E~, x2, E2) be an 
upper bound of the set 

[d: d~> O, ( E l -  Xl) c~ { x E Z  3, Ixl <~d}=(E2-x2)c~ { x ~ Z  3, Ixl ~<d}] 
(15) 

Then 
]g~(Xl,E,)-g~(XR, E2)]<Texp[ -~d(x~ ,E l , x2 ,  E2)] (16) 

for some T and 0~ independent of/~. 
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The method of surgeries of Gibbs distributions developed by 
Dobrushin is used in ref. 7 to establish the representation (14) for the Ising 
ferromagnet partition function with pure boundary condition. Generally 
speaking, the formula (14) follows from a cluster representation for the 
partition function. (8) 

Now we explain the main idea of obtaining the decomposition (14). 
The routine definition of contours leads to a contour model with inter- 
action because the potential (1) is long-range. Below we define clusters D 
with weights y(D) that will not interact, and for them the representation 

Z(S~) = ~ 7(D,)... 7(Din) 

holds, where the sum is over the set of compatible clusters. Geometrically, 
these clusters D can be imagined as sets of usual contours K connected by 
the edges of the lattice Z 3. Two contours can be connected by several edges 
and the whole set has to be connected (i.e., the set cannot be divided into 
two parts such that any two contours of different parts are not connected). 
The weight 7(D) is approximately the same as the product of the weights of 
the contours belonging to it. We can define correlation function of clusters 
and then write the Kirkwood-Salzburg equation. To be able to solve this 
equation it is sufficient to prove an estimate (29) from Lemma 4 which 
shows that the probability of a contour is small. 

The subsequent calculations use the contour model method (contour 
models are defined below). BR(~0) is the set of all contours of the con- 
figuration ~0(x): BR(~0)= {Ko=A(~o), KI,..., Kn}. The union of all finite, 
connected components of the set Z3\supp Ki is called the interior of the 
contour K; and denoted by Int K~. The only infinite, connected component 
of the set Z3\supp Ki is called the exterior of a contour and is denoted 
Ext Ki. The contour Kj is external provided supp Kje Ext Ki, i=  1,..., n; 
i~j .  (1) Geometrically it is obvious that for each contour there exists a 
configuration ~,;(x) such that BR(~(x))=K~, i.e., the boundary of the 
configuration qs~(x) consists of the contour K~ only. For each contour Ki its 
weight will be calculated by the following formulas: 

x , y ~ . Z  3 

7(Ko) = exp[ - fl•(A)] (lVb) 

The contour model corresponds to the formulas (17a), (17b); it is an 
interacting contour model because the potential is long-range. The notion 
of a contour should be updated to reduce the situation to one investigated 
earlier.(1) 
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The contour Kt interacts with the contour Km through pairs (x, y) 
such that x E UK, and y ~ UKm, where 

UK~ = IX: x ~ supp K t vo Int Kz, 

x r U (supp Ki vo Int Ki) t (18) 
i: supp  K i c  In t  K/ ) 

UKm = IX: X ~ supp K.~ Int Km, 

x r U (supp K~ w Int K~) t (19) 
i: supp  Ki c In t  Km ) 

and f(x,  y) r O. 
The value of the interaction 

f(x,  y) = --flY(x-- y)[~p(x) qg(y)- ~b~(x) ~b~(y) 

- OK,(X) r -- g'Kj(X) g%(y) + 2] (20) 

Note that If(x, Y)I < 6flY(x- y). 
The following equation follows from the formulas (17a), (17b), 

and (20): 

exp[-flH(go(x)lrp~(x))] = f i  exp[G(Ko, K~ ..... K,)] y(Ki) (21) 
i = 0  

where the multiplier exp[G(K0, K1,...,K,),] corresponds to interaction 
be.tween contours and with the boundary condition O(x) [see (13)]: 

G(K o, K~,..., K,) 

= - f l  y ( x -  

(x, y ) :  x ~ U x  i 

y ~  UKj, i ~ j  

- g'K,(X) ~bK,(y) -- ~Kj(X) ~Kj(Y) + 23 

- f l  ~ ~ J ( x - y ) [go (x )go (y ) -g%(x )~ (y )+  l] (22) 
i = 1 (x,  y ) :  x ~ UK i 

y E  Aff=l Ex t  Kj 

The set of all pairs in the double sum (22) will be denoted by G. Write 
(21) as follows: 

exp[-flH(~p(x)l~p,~(x)) ] 

= f i  T(Ki) 1~ { l + e x p [ f ( x , y ) ] - l }  (23) 
i = 0  ( x , y ) c G  

822/52/1-2-6 
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From (23) we obtain 

exp[ - f lH(~0(x) lq~(x) ) ]  

= ~ f i  y(K~) H g(x, y) (24) 
G ' = G  i=O ( x , y ) ~ G ' , f ( x , y ) ~ O  

where the summation is taken over atl subsets G' (including the empty set) 
of the set G, and g(x, y) = exp[ f (x ,  y ) ]  - 1. 

Consider an arbitrary term of the sum (24), which corresponds to the 
subset G' c G. Let the bond (x, y) ~ G'. Consider the set ~ of all contours 
such that for each contour K c  oU, l(supp Kw Int K) c~ {x, y}[ = 1. We call 
any two contours from ~(((x, y) connected. The set of contours ~,~ is called 
G' connected if for any two contours Kp and Kq ~ ~ there exists a collec- 
tion {K1 = Kp, K2 ..... Kn 1, K, = Kq} such that any two contours K~ and 
Ki+ 1, i = 1,..., n - 1, are connected by some bond (x, y) e G'. 

D o f i n i t i o n  3. The pair D =  [{K i, i =  1 ..... r}, G'],  where G' is some 
set of bonds, is called a cluster provided there exists a configuration ~0(x) 
such that Ki ~ BR(q~(x)), i = 1,..., r (see Definition 2), G' ~ G [-see (24)], and 
the set {Ki, i = 1 ..... r} is G' connected. The weight of a cluster D is defined 
by the formula 

?(D)= (] y(K,) H g(x, y) (25) 
i=  1 ( x , y ) ~ G '  

Two clusters D1 and 0 2 a r e  called compatible provided any two 
contours K1 and K 2 belonging to D1 and Dz, respectively, are compatible 
and not connected. A set of clusters is called compatible provided any two 
clusters of it are compatible. 

Lemma 3. Let the following boundary conditions be fixed: 

c~(x) = {~o~(x), x~Z3kWc,  M; ~o(supp A w S'~), x ~ supp A w S'a} 

If {D1 ..... D,,} is a compatible set of clusters and Uiml s u p p D i c  We, M, 
then there exists a configuration 

~0 WL, M \ supp A ~ ~ a ( X )  

which contains this set of clusters. For  each configuration ~p(x) we have 

exp[--flH(rp(x)lq~,(x))] = ~ H 7(Di) 
G ' c G  
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where the clusters D i are completely determined by the set G'. The 
partition function is 

~=(S,) = ~ 7(D,) . . -  ?(Din) 

where the summation is taken over all nonordered compatible collections 
of clusters. 

The proof of Lemma 3 follows immediately from the definitions. 
We will write s u p p K c s u p p D ,  D =  [{Ki, i =  1,..., r}, G'] provided 

supp K =  supp K i for some i, 1 ~< i ~< r. 
Lemma 3 shows that we come to noninteracting clusters from 

interacting contours. Figure 3a shows contours of a configuration ~o(x) and 
Fig. 3b shows (one of many) clusters corresponding to the contours 
K0, K1, K2. 

For an investigation of properties of the partition function Z(Sj)  we 
define a contour model, i.e., a family of probability distributions on the set 
of superboundaries formed by compatible collections of clusters D. 

D e f i n i t i o n  4. A superboundary is a finite or countable set {D1,..., 
D ..... } of the set of all clusters 9o such that the collection ~?= {D1,..., 
D ..... } is compatible. Let ~ denote the set of all superboundaries, [8] the 
set of all clusters that are not compatible with at least one cluster Die 8, 
and. [~I the number of clusters contained in the superboundary c~. The 
characteristic function )~ v is defined as follows: 

10 supp 8 c V 
Zv(8) = supp O r V 

qJ 

2 

o.. 

.7. 

Ko . 

(a)  

r 

t< 

(b) 

I7 

Fig. 3 
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The empty superboundary is supposed to belong to 9 .  The formula 
(25) determines a contour model in a standard way (i) 

P v ( ~ ) = ) ~ v ( O ) Z - I ( v [ 7 )  H ~(Oi) 
DiEO 

where 

Z(VIT)= ~ 1-I 7(D~) 
ct:supp0c V DiE6 ~ 

A correlation function is the probability that ~3 is a subset of the super- 
boundary: 

pv(#) = ~ Pv(~) (26) 

The correlation function satisfies the Kirkwood-Salzburg equation (n 

I IEa]l 1 pv(O)=Zv(~)7(O) 1+  ~ ( - 1 )  I~ ~ pv(Q') (27) 
IO'l= 1 a'= [~] 

The general problem consists in investigating the behavior of p v as 
VI" Z 3 in the sense of Van Hove. This problem was solved (1) under the 
assumption that the model is given by a c-functional, - I n  I~'(~)l >z/~ 161, 
with rfl large enough. 

Earlier E. I. Dinaburg and Ya. G. Sinai used an improved definition of 
a contour for studying a Potts model like the one given in Definition 3, in 
order to estimate an interaction. A similar approach was proposed by 
Bricmont et al. (~~ It is worthwhile mentioning the papers of Mazel, (11) 
where some steps toward the elimination of the interaction between 
contours were taken also. 

It follows from ref. 9 that to investigate Eq. (27) by the Minlos-Sinai 
method O'12) is sufficient to establish the following lemma. 

I .emma 4. For  any large enough fl there exists R = R(fl) such that 
for any supp K 

F(supp K) = ~ I~(O)l < exp( - f l zn )  (28) 
D: supp Kc supp D 

where z = 3 and the support supp K consists of n cubes A,. 
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Before proving this lemma we explain the main idea of our proof. The 
support supp K consists of cubes At with side R. The energy loss in each 
cube At is greater than or equal to 6fi, and the number of contours with 
fixed support consisting of n cubes A t equals 2 "R3, so a rough calculation of 
the weight of a contour gives ~exp( -6 f ln+R31n2n) .  We have to 
calculate the weight of a contour in a more careful way and obtain a more 
exact estimate (29) of the weight of a contour. 

The main point of our proof is the choice of the constant R: while R is 
increasing, the weight of our contour is also increasing. On the other hand, 
the weight of a bond Ig(x, Y)I is decreasing, hence the "influence" of the 
"entropy" of all the clusters containing a given contour K is decreasing. 
Taking into account this circumstance, we choose R an optimal way. Thus, 
the "influence" of "entropy" is controlled by exp(-bf ln)  and the exponen- 
tial estimation (28) remains true. The idea of chosing R in this way is a 
combined high-temperature, low-temperature expansion. Thus, it is suf- 
ficient to take the sum over contours that are nearest neighbors to contour 
K [see (33), (34)]. The final system of inequalities (i)-(vi) [after Eq. (38)] 
has a solution provided the potential J(x) has certain decay properties. 
We take J ( x ) = x  ~, where ~ > 9, though it is possible to consider other 
potentials. 

ProoL Statistical weights of contours are defined by the formulas 
(17a), (17b). First let us estimate the statistical weight of the contour 
support supp K defined by the formula 

~(supp K) = ~ 7(Ki) 
Ki: s u p p  Ki = s u p p  K 

Let the support supp K consist of n cubes At. Clearly, there is at least 
one spin flip in each of them and the loss of energy is not less than 6ft. The 
number of all possible locations of unit exitation in one cube is equal to R 3, 
which gives R 3n in the support supp K. Fixing the points of flips in each 
cube At, we find an upper bound on the partition function as follows: if we 
take into account interactions of nearest neighboring points x and y only, 
then the sum of statistical weights of all Ising contours passing through a 
fixed face will be less than Z2~1 exp(-2i lk)  s k, where s is a constant (s k is 
an upper bound on the quantity of Ising contours, consisting of k faces and 
going across a fixed face; see below Lemma 7). Moreover, note that Ising 
contours may pass through each of the faces of supp K, the number of faces 
being less than 6nR 3. Hence 

~(supp K) <~ exp(-6nfl) R3n I l + ~ exp(--2flk) skl 6nR3 (29) 
k~l 
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Suppose /~>ln[(2s)l/2]; then the sum in the third factor of (29) is 
estimated by a geometrical series with a denominator less than 0.5: 

~(suppK)<.exp{-nI6B-31nR 

( exp(:2/~_+ l_n s) ]'~ 
-6R31n  l + l _ e x p ( _ 2 f i + l n s ) j )  

o r  

~(supp K) ~< exp{ - n [6/~ - 3 In R - 6R 3 exp( -2/~ + In 2s)] } (30) 

Now we estimate from above the sum (26) of statistical weights of all 
supports passing through a fixed cube A,: 

Q = ~ ~(supp K) 
K: A c s u p p  K 

<<. ~ f'(Ak)s k 
k = l  

~< exp[ -6/~ + 3 In R + 6R 3 exp( -2/~ + in 2s) + In 2s] (31) 

Here A k is any connected set, consisting of k cubes A,; the geometrical 
series Zff= 1 7(A~) sk is summed under the assumption that the denominator 
is less than 0.5: 

6/? - 3 In R - 6R 3 exp( -2/~ + In 2s) > In 2s (32) 

Let D denote an arbitrary cluster containing K: K c  D. We shall say 
that a contour K 'c  D is a neighbor of the first order of a contour K in a 
cluster D and write K'*-~ K provided K" and K are joint (see Definition 3). A 
contour ~ is called a neighbor of the qth order for a contour K, provided 
K~K1 ~ . . .  ~-~Kq_ 1 * - - ~  and there are no such diagrams with fewer 
arrows. Therefore, with a contour K c  D fixed, all the other contours of a 
given cluster D are divided into nonintersecting classes indicated by the 
integers 1,..., p of contours that are neighbors of the qth order for the con- 
tour K, q = 1 ..... p(D, K). The number p(D, K) is called the order of the 
cluster D (the order of a cluster containing a unique contour K is zero). 
The contours that are neighbors of qth order of a fixed contour K will be 
denoted by Kq(K). 

Besides the weight ~(supp K) of each support supp K we introduce the 
new weight ~b(supp K) = ~(supp K) exp(/?nb) provided supp K consists of n 
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cubes A,: Isupp K[ = n. Then, analogously to formula (31), we can write for 
such a weight 

Qb = ~ '}b(supp K) 
K; A c supp  K 

<.exp[-6fi+31nR+6R3exp(-2fl+ln2s)+ln2s+bfl] (31') 

We can write the condition (32) as follows: 

6fl - 3 In R - 6R 3 exp( - 2 f i  + In 2s) - bfl > In 2s (32') 

Suppose that we have proved the following inequality for a supp Ki: 

~7~(D) ~< ~](supp K~) exp(nbfl) 
D: supp  D = {supp  K~,supp K i + I }  

(33) 

where the sum is taken over all the clusters consisting of a given supp Ki 
and the supp K~+ 1, which are neighbors of (i + 1 )th order of the contour K. 
The weight of a cluster ~ (D)  is the calculated according to Definition 3: 

~(D) = 7(Ki) ~b(Ki+ 1) exp[G(Ko, K1,..., K,) ]  

where the weight of the contour Ki+ 1 is chosen as ~b(Ki+ 1)= y(Ki+ 1)enba. 
As we can see, ~b(D)= 7(D)e "b~. 
Now by induction on the order of a cluster it is not difficult to obtain 

the inequality 

F(supp K) ~< ~(supp K) e nb~ = ~Tb(supp K) 

from the inequality (33). 
It can be shown that 

7(D) 
D: s u p p  D = { supp  Ki, supp  Ki+ 1 } 

~ ( s u p p K i )  I-I I 1+  
X ~ UKi g(x,  y )  ~ G(x, y)  

= ~(supp Ki)" Z 

Ig(x, Y)I M, M2] 

(34) 

The multipliers M1 and M2 are associated with the contours 
separating the point x and y from infinity, respectively. Assume that 

Qb < 1, Qb m = ~ ~7~(supp K) < e-2t~m (35) 
K: x ~ supp  K, Isupp K t / >  m 
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It can be shown that 

Finally, 

M 1< f i  (l+Qgbk) 
k = l  

• l n ( l + Q s k ) <  ~ Q s k < e x p ( - 1 4 f l )  
k = l  k = l  

and M1 < e x p [ e x p ( -  14fl)]. Similarly, M2 ~< (1 + Qb) M1" 
To each "bond" g(x, y) from (34) such that x ~ Int K we assign the 

point z e s u p p  K such that z is an integer point closest to the segment 
[x, y ]  (if there are several of them, then we choose the first one under 
some numeration of the points of Z 3). Bearing in mind that for each point 
z ~ supp K there exist no more than 47zr 3 "bonds" g(x, y) with the lengths 
r=  I x - y l  assigned to it, we estimate the right-hand side of (34) 
( M a ' M 2 < 2 e  2< 18): 

Z~< l-I 1 + ~ - -  ~ ~ r31g(x,y) l  
~ supp K g(ff, y) ~ G(x, y) 

I 1 ~< 1 + 24rc ~ r3g(x, y) - (1 + y).e3 (36) 
g(x, y )~  G R 

where 

R _  G~ - { g(.~, y): I-~-Yl > R }  

Finally, we see from the expressions (30), (31), (34), and (36) that for 
(33) to hold it is sufficient that 

exp ( -nb f l )  exp[nR 3 ln(1 + Y)] < ~ e x p [ - n ( b f l - R 3 y ) ]  < 1 (37) 

But 

e x p [ - n ( b f l -  R 3 Y)] <~ exp[ -n(bf l  - ft. 107R3)] (38) 

Explanation of (38): (a) Ig(x, Y)I < 12flJ(r) when 6flJ(r)< 1. (b) The 
points x ~ Z 3 are calculated in the following way: r ~ Z 1 fixed, there are just 
6 .4 r  2 points on the surface of the cube with its center at the origin and side 
length 2r. Their distance to the coordinate origin is between r and 31/2r. 

Finally, we obtain from (30)-(38) that for (28) to hold it is sufficient 
to choose fl, R(fl), and b in such a way that the following system can be 
solved: 
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(i) b >  107R3y~=R+I  rSj(r) 

(ii) 6flJ(r)<l when r > R  

(iii) f l > l n [ ( 2 s )  I/2] 

(iv) Condi t ion (35) 

(v) Condi t ion (32') 

(vi) 6fl - 3 In R - 6R 3 exp( - 2 f l  + in 2s) - b~ > rfl 

Condi t ion  (i) shows that  the "stock" b must  control  the influence of 
interaction. 

7he Solution o[ the System (i)-(vi). First, (v) follows from (iv). 
Below the solution is sought for potentials J(r)= r -s,  a > 8. We are not  
going to consider the temperature  interval as large as possible. We show 
just a variant  of the solution. Suppose fl>31n(2sR). Then (iii) holds 
automatical ly and 

Qb ~< exp { -- m(6fi -- 3 In R -- 6R 3 exp( - 2fl + In 2s) -- In 2s -- bfl) } 

~< exp{ - m(2fl + (fl - 3 In R) + (fl - 6R 3 exp( - 2fl + In 2s)) + (fl - bfl) } 

e x p ( - 2 t i m )  (39) 

where b = 1. It is proved exactly as in (39) that  (vi) is true with z = 3. Then  
we choose 

[exp(f l /3  
R-- l_  2s !]~ 

Here [c]~  denotes the greatest integer less than c and divisible by R~. 
We see that  (i) and (ii) hold, 

1 > 107R 3 ~,, r 5-~ (40) 
r = R + l  

6fiR - ~ < 1 (41) 

Indeed, substitute eP/3/2s- R~ instead of R and sum the series in (40), 

(ea/3/2s_R,)~ 8>  107 (42) 

and 

(e~/3/2s- R~) > (6fl)1/~ (43) 

Obviously,  for ~ fixed there exists fll  such that  (42) and (43) hold 
when fl > ill,  R = (e~/3/2s), and z = 3, b = 1. The proof  is complete. 
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We will use the contour method of Minlos and Sinai (t'12) and consider 
the right-hand side of (27) as an operator in Banach space of boundary 
functionals. A boundary functional ~ = ~(~) is a real function on the set of 
finite superboundaries. The set of boundary funetionals forms a linear 
space. We introduce the following norm I[r w, W c Z 3 ,  of a boundary 
functional: 

/~ II w = sup 
~(~) 

o =~ exp[afl [supp 01 - F(supp 0) + (ab - ~fl) dist(O, I~)] 

where a = s + b, 

dist(c?, W) = min dist(supp K, ZV\ W) 
KcO 

and 

F(supp 0 ) =  ~ 7(D) 
D: supp  D = supp  0 

Every such norm determines the Banach space Bw of boundary functionals. 
The right-hand side of (27) determines an operator E on boundary 
functionals: 

/ J a i l  

(E~)(0)=7(~)  ~ (-1)la ' l  ~ ~(0') (44) 

With the new definition (27) can be rewritten as 

~=XvT+ZvEZvr V c Z  3 is finite 

The solutions of the equation 

~=7+E~ 

(45) 

will be called correlation functions in an infinite volume, since the 
correlation function satisfies (45). 

Using Le mma4  and the definition of /r we can prove the 
following lemma in a way analogous to refs. 1 and 12. 

Lemma 5. There exists /~1 such that [ IE I Iw<e  -'~ for/3>/31. 
Further, proceeding as in ref. 1, it is possible to obtain all the results 

concerning correlation decay and decomposition of a free energy into a 
volume and a boundary part. In this way one can obtain Lemma 2. 
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5. STATISTICAL PROPERTIES OF AN INTERFACE 

Using Lemma 2, we study the statistical properties of an interface A. 
For convenience we express the distribution of a value c5 via the 
geometrical properties of an interface. 

Let HwL,~ denote the set of all the cubes A, ~ WL, M. Let 9Jlw~,M denote 
the set of all interfaces A of the configurations (~(x) [recall that ~ , (x)  is a 
finite perturbation of q~,(x) in the volume WL,~]; Tw denotes the set of all 
centers t of the cubes A~ c W. 

I_emma 6. For all fl large enough there exists a function 
f~(t, 3, WL.M) defined for all integer numbers L, M, L/R, M/R for all the 
interfaces A E 9J~ V/L,M for all the centers t of the cubes A~ ~ HwL.M such that: 

(I) For some C < o e ,  c > 0  independent of fl, any W=WL, M, 
~ = W ~ , ~ ,  any A ~ v e ,  3 e ~ w ,  and any centers t, 7 of the cubes 
A t ~ H ~ ,  A t 6 Hw,  the following two inequalities hold: 

If#(t, A, W)[ ~< C (46) 

[fr A, W)-f~(7, 3, I~)[ ~< Cexp[-cd(t, A, W, 7, 3, W)] (47) 

where d(t, A, W, 7, 3, 7V) is an upper bound of the number d such that 

(m-t)(~ {x•R3: Ix I ~d} = (~/~f- 7) {~ { x e R 3 :  tx[ ~ d }  

(suppA-t)c~ {xeR3: [x[ ~< d} -- (supp 3 -  7) c~ {xeR3: ]xl ~d} 
(48) 

(II) The probability of the interface calculated in the Gibbs dis- 
tribution corresponding to the Hamiltonian (1) and boundary conditions 
~0(x) = {~0~(x), x e Z 3 \  WL, M} is equal to [see the formula (13)] 

Prob(6 = A) = (ZL, M)-I exp { [ -  fix(3)] 

+ • f~(t,A, W)I, Aeg2il w (49) 
t e T w ~ o ~ a  ) 

where 

Z L M =  ~ e x p { [ - - / ~ c ( A ) ] +  ~ f~(t,A,W)} (50) 
ZI c- gJ~w t E T w c ~  S3  

Proof. Taking into account the analogy with ref. 3, Lemma 1, we 
present just a sketch of the proof. 
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Define 

fr A, W)= ~ [g,(x, S~)-  g~(x, W)] 
x ~ S ~ : h W ( A ) - - t  

- E g (x, w)  (51) 
x E S z i : h W ( A ) = t  

where for any point x, hW(A) denotes a center t e TL, M nearest to x (if there 
are several such centers, then hW(A) is the first point by the lexicographic 
ordering of all the centers). 

It is not difficult to see that 

in Z(S~) = ~ f~(t, A, W) + ~ g~(t, W) (52) 
t ~ T w n S ~  x ~  W 

Thus, (49) follows from (13) and (51). We shall not check the properties 
(46), (47) of the functionfa(t,  A, W) (see ref. 3). Lemma 6 has been proved. 

Now we study the interface in an infinite parallelepiped WL. Let gJl/. 
be the union of 92~WL.M. Obviously, 9J/L is the set of those interfaces from 
9J/wL.~ that consist of a finite number of cubes A,. Lemma 6 [the inequality 
(47)] ensures the existence of the limit 

f~(t, A, L ) =  lira f~(t, A, WL, M) (53) 
M ~ o o  

for all A ~gJlL, L, and t E TwL c~ g~. The function fr A, L) satisfies the 
conditions (when/~ is large) 

Ifp(t, A, L)[ < C (54) 

IfB(t,A,L)-fa(F, 2, L) l~Cexp[-~d(t ,A,  WI~,7,2, WL)] (55) 

where d( .... ...) is defined in Lemma 6. Thus, we introduce the probability 
distribution on the set of the interfaces A e 9JIL: 

ProbL(A) = (ZL) 1 exp [ -/~rc(A) + 
L t s TwL c~ ga 

where 

f~(t, 3, L)]  (56) 

A E ~J~L t ~ TwL r~ S j  

By showing ZL to be finite, we will show that the definitions (56), (57) 
are correct. 
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L e m m a  7. The number of all connected subsets of the set of all 
cubes A including one fixed cube and consisting of n cubes is not greater 
than s", s < c~. 

Proofs of analogous lemmas are presented in many papers (see ref. 1, 
Chapter 2, Lemma 5, or ref. 3, Lemma 2). 

Using Lemma 7, the estimates (54) and (57), and the proof of 
Lemma 3, we obtain 

ZL <<. ~ exp[-tG~(A)+CIsupp3]] 

~< ~ s k e x p [ - k ( f l J .  + C)] < oo 
k = l  

where ]supp KI denotes the number of all cubes A, e supp/I. 
The definitions of (56), (57) are correct for /~J~ > m a x ( ( C +  In s)/J., 

B1/J~, tGz/J.) or flJ~ > const. Analogously, one can prove that 

lim ZL, M= Zc (58) 
M ~ ' o o  

The following lemma allows us to reduce the investigation of the Gibbs 
field in WL to the investigation of the geometrical properties of an inter- 
face A. 

k e m m a  8. Let Prob{cp(x),xE WL} be the Gibbs distribution in 
WL corresponding to the Hamiltonian (1) and the boundary conditions 
~bwLr {r x~Z3\WL}; let 3 be the interface of the configuration 
{r x ~ WL}. Then 3 E ~Jlr with the probability 1, and, moreover, 

Prob(6 = A) = Probr(~),  A ~ ~IIL (59) 

ProoL This follows from Lemma 6 and (53), (58), (56): 

Prob(6=A)= lim (ZL.M)-lexpI--fl~c(A)+ ~ f~(t,A, W)] 
M ~ oo t ~ T w r ~  ~ 

= ProbC(3) (60) 

Due to (56) and (57) the sum of probabilities (59) taken over all 
zt ~ 992 equals 1, and Lemma 8 follows. 

6. THE G E O M E T R I C A L  S T R U C T U R E  OF AN INTERFACE 

To study formula (59) it is necessary to establish some geometrical 
features of the interface A. The structure of an interface of an Ising 
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ferromagnet is studied in ref. 3. Because of the analogy with ref. 3, the 
proofs of the geometrical facts in this section will be omitted. 

The interface of the ground state q~.(x) will be called regular and 
denoted by A(~). By the projection of a cube At with center at the point 
t = (7~(t), 72( 0, 7S13(t)), where ti(t) are the coordinates of the point t in the 
coordinate system defined by lattice 2 3, we mean the cube p(At)=Ap(t~, 
where p ( t ) = ( - i o ,  72(0, 73(0). Here io denotes the distance between the 
center of any cube belonging to the regular interface and the plane 7z. 

Assume that the interface A is fixed. We will say that a cube At is a 
ceiling cube if there exists no other cube At1 such that p(A,)= p(A,l ), and 
the boundary (not a thick boundary) B~(~o(x)) intersects the cube At in a 
horizontal face 

h = {X = ( .~I(X),)~2(X),  .)~3(X)): .)~I(X) = t l ( / )  -1- ~, 

1~2(x) - t2(t)l ~< R/2, 1~3(t) - ?3(t)l ~< R/2} 

where I~l ~< R/2 is a number determining the location of an interface with 
respect to the cube At. The last condition means that ~0(A,) is obtained as 
the restriction of the ground state r on the cube At when n' is parallel 
to ~. Obviously, all the cubes of a regular contour are ceiling cubes. The 
rest will be called wall cubes. Walls S are defined as connected components 
of the set of all wall cubes. Let us divide all ceiling cubes into maximal sub- 
sets consisting of connected unions of cubes having the same distance from 
the plane z. We call these subset ceilings T. Evidently, there exists only one 
ceiling containing all the cubes of the regular interface. This ceiling will be 
called regular. 

Complications in defining walls and ceilings arise because there may 
be many shapes (some patterns are shown in Fig. 4) of the interface. The 
crosses in Fig. 4 denote the cubes that are already wall cubes independently 
of r 

Below we shall show that when fl is large, the probability of the event 
that a wall cube is located in a given place is small. For this purpose we use 
the usual Peierls argument. The introduction of standard walls and wall 
groups is necessary because of the interaction of close and high walls. 

I l L  I • 2 1 5  k, I 

Fig, 4 
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By the projection p(S) of a wall S we mean the union of all the cubes 
that are projections of the cubes of S. The projection p(T) of a ceiling is 
defined analogously. The ceiling neighboring to the wall S, the projection 
of which belongs to the infinite, connected component of the complement 
to p(S), will be called the base of S [the complement is considered with 
respect to the support of the regular contour of the interface A0z)]. 

I . emma  9. Each wall has only one base. 
A wall S for which there exists an interface z] e ~Jtc such that S is the 

only wall for supp z~ is called standard. A cube belonging to the interface 
A(n) is called interior for the projection p(S) if its interior points belong to 
p(S) or a finite component of the complement of p(S). The cubes interior 
for the projection p(T) of a ceiling T are defined analogously. The set of the 
centers of interior cubes for the projection p(S) of a standard wall S will be 
denoted by Int S. The point from Int S having the minimum number under 
some numeration of the centers of all cubes will be called the origin of a 
standard wall S. The existence of the origin for any standard wall is 
evident. Let T~ denote the set of all centers of the cubes belonging to 
supp A(n). We define the empty wall A, with the origin at a point t ~ T~. 
The number of cubes belonging to the wall At is equal to zero; p(At) is the 
empty set. Let {S}, denote the set of all standard walls with the origin at a 
point t. The set {St, t~ T~} (where St~ {S}t) will be called an admissible 
collection of standard walls, provided there exists a configuration {~o(x)} 
such that A(q)) consists of these walls. Let OL denote the set of all 
admissible collections. The height of a ceiling T is the number v = 
dis t(A,  supp A(~)) + R, where At is an arbitrary cube of the ceiling T. The 
shift by 0 (where 9/R is integer) of set E of cubes is the set E~= 
{At: At - v E E}, where ~q= (0, 0, 0). 

The shift Q(S) of a wall S means its shift by - & w h e r e  0 is its base 
height. 

The shift Q(S) of any wall S is a standard wall. L e m m a  10.  
Let 

9,(A) = ~Q(S ) if Q(S)e{S}t 
(A, if Q(S)r {S}t 

for all S belonging to supp A. Then {~t(A), t e T~} e O L and in this way a 
bijection is determined between the set of an interface contour A e gJ~L and 
the set of admissible collections of standard walls OL. 

I . emma  1 1. Suppose that for two interfaces A e gB L and A e 93l L the 
following two conditions hold: (1) 9t(A)=9,(A), teT=\{to} and (2) 
9t0(A) # 9t0(~)= At0. In addition, let T1 ..... T~ be the ceilings of the inter- 
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face A that are neighboring to the wall Q-l(~t0(A)), Tt being its base, and 
let d~, i = 1,..., l, be the difference between the heights of the ceilings T~ and 
Ti. Finally, let Ii, i = 1 ..... l, be the set of cubes such that interior points of 
their projections belong to a connected component of the complement to 
p(:~t0(A)) such that T i c I  i and let I = U t i = l l i  . Then it is possible to 
establish a bijection between the cubes from supp d ~ I into supp z~ c~ L It 
is obtained by shifting by d~ the cube At when A~ E I~. Except for the cubes 
from supp z] c~/, the interface contains only the set of cubes belonging to 
the base of T~ and projected into cubes of p(gt0(A)). 

7. I N T E R F A C E  S H A R P N E S S  

Now we proceed to the final part of the proof of Theorem 2. With 
each standard wall we associate the number 

co(S) = I S I -  IP(S)I (61) 

where/~(S) is a maximum subset of the set p(S) such that for every cube 
At1 s p(S) there exists a cube At such that p ( A , ) = A , I  and ~p(At) equals the 
restriction of ~p~,(x) for some rt' II ~; IsI and [/~(S)[ denote the numbers of 
cubes belonging to S and/3(S), respectively. It follows from the definition 
of the wall that 

co(S) >~ ISI/2, co(S)>~p(S) (62) 

and, moreover, if tl and t2 are the centers of cubes that are interior relative 
to the projection of the wall S, then 

It1 - tz] < co(S) - 1 (63) 

It follows that co(S) > 1 for any nonempty wall. 
Consider the set of random variables {r/t, tE T~} with values in {S}, 

such that 

l 
~ProbL(A)  if ~ t = ~ t ( A ) ,  t~T~  

Prob(r/, = ~ , ,  t ~ T~) = ~ (64) 
0 if { ~ , t E T ~ } r  

The formula (64) will be fundamental for further estimations. 
Let 7~ T~ and let e(7) be the number of cubes At such that p(At)  has 

its center located at a point 7. Standard walls $1 and $2 will be called 
neighboring provided that for some points tl ~ Int S~, t2 ~ Int $2 

[ t t -  t2l < [e ( t l ) ]m + [e(t2)] m (65) 

Let us call walls S 1 and S distant provided they are not neighboring. 
The set of standard walls N is called a group of walls if N is a collection of 
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admissible walls and for any walls S e  N and S e  N there exist walls S~ = S, 
$2 ~ N, .... S ,_  ~ e N, S, = S, such that Sk and S~ + ~ are neighboring walls for 
k = 1,..., n - 1. The origin of the wall group N is the point t ~ T~, which is 
minimal with respect to its number among all origins of the walls S~ N. 
Let A, be an empty wall group with the origin located at a point t. The set 
of all wall groups with the same origin located at a point t is denoted by 
{N},. The collection of wall groups {N,, t~ T.} is called admissible if the 
set Of all the walls belonging to the wall groups {N,, t~ T~} is admissible 
and any two walls S~ ~ N~, S~ ~ Nz, k ~ l, are distant. 

It can be derived from Lemma 10 that it is possible to establish a 
bijection between the set of supports of interfaces and the set of admissible 
collections of wall groups {N,(A), t e T~} in such a way that the collections 
of standard walls {S,, t ~ T.} contain those and only those nonempty walls 
that belong to the groups of walls Nt(A). Therefore, it is useful to introduce 
the set of random variables {~,, t~ T~} with values in {N}, such that [see 
(64)] 

Prob(~/= N,, t ~ T.) = 

ProbL(A) 
zl 

Suppose that A ~ L ,  AegJ/L, 

if N, = N,(A), t ~ T. 

if the collection {N,, t~ T,} 

is not admissil~le (66) 

N,(A) = Nz(A) = N,; qg(N,(A)) = 
qg(N,(z~)), l e T~\ { t}; N,(A ) = N, ~- A, = N,(A). 

I . e mma  1 2. There exists ~ such that for all fl > ~/J, for any L, any 
t~ T.,  and any NI~ {N}t, l~ T,,  the conditional probability is given by 

Prob(~, = Nt, ~p(~,) = ~p(Nt) I ~z= N~, ~0(~z) = ~0(N,), l~ T~\ {t}) 

~< exp{ - f l [~c(A)-  x(A)] + ~o(N,). const } (67) 

if {Nt, l ~ T , \ { t } , A t }  is an admissible collection of wall groups. Here 
~o(Nt) =ZS~N, ~o(S), and J~ is a constant depending on the plane n only: 

Proof. Using (61), (50), and (66), one can show that 

Prob(~, = N,, (~0(~t) = q~(Nt) I ~, = N,, q~(~,) = ~o(N1), l e T . \  { t } ) 

Prob L(A ) 
<~ 

ProbL(~) 

~< exp{ - fl[~c(zl) - x(/J)] + co(N,)- const } 

•  ~ f a ( t , A , L ) - f a ( t , A , L ) ]  
tE Twc~ S,j 

(68) 

822/52/I-2-7 
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Now using (47), (60) from Lemma 6, Lemma 11, the definition of a 
group of walls [see (65)], and the method of ref. 3, one can complete the 
proof of Lemma 12 without difficulties. 

Note that it follows from (67) (and from the fact that if 
{F~, I t  T~\{t}, At} is not an admissible collection of groups of walls, then 
surely {Fz, le  T.} is not an admissible collection)that for all Nte  {U),, 
te  T~, 

Prob(~t = N,, rp(~t) = go(Nt)) 

~< exp{ --/~[x(A) - x(A)] + co(N,), const } 

~< exp[ -3flJ~o~(Nt) ] 

Finally, similarly to (39), 

Prob(~t = U,, rp(~t)=rp(Nt))<<.expE-flJ~co(Nt) ] (69) 
(P(Nt) 

k e m m a  13. The number of different groups of walls N, such that 
rg(N,) = k does not exceed gk, where g is a constant. The proof is analogous 
to the proof of Lemma 9 from ref. 3 and is omitted. 

By a regular ceiling we mean the ceiling belonging to the support of a 
regular interface A(~). 

k o m m a  14. There exists a constant Mo such that under the con- 
dition ~J~>~,  for all L and for any cube Ate  supp A(~) the probability 
p(L, At) that this cube does not belong to a regular ceiling is not greater 
than M0 exp( - �89 

ProoL It follows from the definitions, the properties of ceilings (see 
Section 6), and the definition of a regular ceiling that if At e supp A(~) does 
not belong to a regular ceiling, then At is interior for the projectiol~ of a 
wall of an interface A. In turn, if a cube At is interior for the projection of a 
wall belonging to a group N~ of walls, then it follows from (63) that 
]t - 7] + 1 ~ co(NT). 

Thus, 
p(L, A,) <~ ~ Prob(co(~,) >~ I t -  tl + 1) (70) 

t~ T~ 

Applying Lemma 13 and inequality (69), we obtain that when /~ is 
large enough, there exists a constant M~ such that 

Prob(co(~,) ~> I t - t l  + 1) 

<<. ~ g~exp(-3pJ~k)<<.M~exp[-~J~(lt-71+l)] (71) 
k~>lt--?l+l 

The estimate of the lemma follows from (70) and (7t). 
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Proof of  Theorem 2. Let x ~ Z  3, O~(x)= -1 ,  and x e A t .  It follows 
from the definition of the regular ceilings that if At is a cube of the regular 
ceiling, then r = -1 .  Using clusters (Definition 3), Lemma 14, and the 
standard method for proving the existence of a phase transition in the Ising 
ferromagnet (Peierls estimate for pure boundary condition), one can show 
that 

Prob(cp(x) = - 1 )  > 1 - g(fl) (72) 

where g(fl) ~ 0 when fl -~ ~ .  The estimate (72) has been obtained for the 
volume $3-\S~. The second estimate (5) can be proved analogously. 

8. C O N C L U D I N G  R E M A R K S  

1. The exponent g in Theorem2 is chosen for the sake of con- 
creteness. It follows easily from the proof of Theorem 2 that it can be 
generalized to other potentials. It is important only whether the conditions 
(i)-(vi) in Section 4 can be satisfied when fl is large. Increasing the poten- 
tial decay, we can improve the critical temperature value. 

2. It would be extremely interesting to investigate the Gibbs state 
corresponding to the boundary conditions q3(x) = {~0~(x), x e Z 3 \ WL.M } 
in the case of a nonrational plane re. 

3. By analogy with ref. 3 or ref. 13 one can prove Theorem 2 for the 
model with the following finite-range interaction Hamiltonian in the case 
that the plane rt is rational: 

I-I~(~o) = _1 y~ J ( x -  y) ~o(x) ~o(y) (73) 
x, y ~ Z 3, a n d  (x, y )  

~z-nearest 

The configuration q~(x) is a stable ground state of model (73). Adding 
ferromagnetic interactions J ( x - y )  (where x and y are not ~-nearest) 
requires a larger Peierls constant for the ground state ~o,(x). Despite this, 
all the techniques developed in Section 4 were focused exactly on proving 
that "extra" interactions do not invalidate Theorem2. It would be 
interesting to prove the last assertion by the correlation inequalities 
method (see ref. 13). 
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